
 🚀Namaste React Notes🚀

 By
 �Aditya Kharadkar📔

 LinkedIn: https://www.linkedin.com/in/aditya-kharadkar-6352ba174/

 2

 Namaste React
 Episode 01 - Inception

 What is a CDN ?

 ● A Content Delivery Network or Content Distribution Network
 (CDN) is a geographically distributed network of proxy servers
 and their data centers.

 ● The goal is to provide high availability and performance by
 distributing the service spatially relative to end users.

 ● CDNs have grown to serve a large portion of the internet content
 today, including web objects (text, graphics & scripts),
 downloadable objects (media files, software, documents),
 applications (e-commerce, portals), live streaming media,
 on-demand streaming media, and social media sites.

 ● CDNs are a layer in the internet ecosystem. Content owners such
 as media companies and ecommerce vendors pay CDN operators to
 pay their content to their end users.

 ● We can add React into our project by injecting CDN links in it (in
 an .html file).

 Why do we use CDN ?

 ● Improved scalability and connectivity.
 ● In addition to facilitating end-users with faster load times, which

 translates into greater user -experience, a content delivery

 Aditya Kharadkar

 3

 network also rewards web publishers with increased traffic,
 higher page views, etc.

 ● Decreased bandwidth consumption.
 ● Lower latency.
 ● Latency is the lag between request and response.
 ● Effective traffic spike management.
 ● Enhanced cyber security.
 ● A CDN employs automation and data analytics tools that help

 identify firewall issues, Man in the middle threat, Distributed
 Denial of Service attacks.

 What is crossorigin and why do we use it in React CDN ?

 ● CORS or cross-origin resource sharing is a mechanism that allows
 memory resources (e.g., fonts, JavaScript, etc) on a webpage to
 be requested from another domain outside the domain from which
 the resource originated.

 React.development.js

 ● This file is the core of React.
 ● This file contains the whole code of React which is written in

 JavaScript.

 React-dom.development.js

 ● Using this file, React interacts with the browser DOM.

 Aditya Kharadkar

 4

 First program in React

 ● The costliest operation for a browser is when the browser needs
 to manipulate the DOM.

 ● Any React element is nothing but a JavaScript object.
 ● This object contains a key known as props which stores the

 children and other attributes of the React element in a key-value
 pair.

 ● The render() function is responsible for taking the JavaScript
 object (React element) as an argument, converting it into an
 HTML tag and putting it in the DOM.

 Aditya Kharadkar

 5

 Create nested elements (with sibling elements)

 Where should I put the <script> tag ? In the <head> or <body> ?

 ● The reason it was recommended to put <script> tags at the end of
 the <body> was so that the scripts wouldn’t stop the browser
 from parsing the HTML.

 ● When a browser gets to a <script> tag, it stops everything else
 and loads the files for that <script> tag and then evaluates it.

 ● Thus, if you put <script> tag in the <head> or at the beginning of
 the <body>, then the user would have to wait longer for the HTML
 to render, possibly leaving them staring at a blank page for a
 while.

 ● Nowadays this isn’t really a concern any more because you can
 force the browser to download/evaluate JS files asynchronously
 by using the async/defer attribute on the <script> tag.

 ● Be advised, these attributes only work for <script> tags loading
 external JS files (i.e. the src attribute is pointing to a file).

 Aditya Kharadkar

 6

 What if there is already an HTML element inside the <div> which
 is rendered by React using render() function.

 ● If there is already an HTML element in the <div> tag, then that
 HTML element will be loaded in the DOM and shown on the page.

 ● But as soon as JavaScript reaches the <script> tag which imports
 the React code, it will replace that HTML element with the React
 code.

 What is Emmet ?

 ● Emmet is a free add-on for your text editor that allows you to
 type shortcuts that are then expanded into a full piece of code.

 What is the difference between a framework and a library ?

 1. Library
 a. A library provides a set of helper

 functions/objects/modules which your application code calls
 for specific functionality.

 Aditya Kharadkar

 7

 b. Libraries typically focus on a narrow scope (e.g., strings, IO,
 sockets), so their APIs also tend to be smaller and require
 fewer dependencies.

 2. Framework
 a. Framework on the other hand has defined open or

 unimplemented functions or objects which the user writes
 to create custom applications.

 b. Because a framework is itself an application. It has a wider
 scope and includes almost everything necessary to make a
 user application as per his own needs.

 ● When you use a library, you are in control of the flow of the
 application.

 ● When you use a framework, the framework is in control of the
 flow of the application.

 ● The framework dictates the architecture and how the application
 is structured, and you fill in the details within that structure.

 ● For example, a web framework will often handle routing,
 middleware and request processing and you define the specific
 actions for your application within that structure.

 ● In a library, you decide when and where to call library functions.
 ● For example, you might use a library to perform specific tasks

 like handling HTTP requests, manipulating data, or creating UI
 components.

 Why is React named “React” ?

 ● React is abruptly named because it “reacts” quickly to the
 changes without reloading the whole page.

 ● It uses the virtual DOM to efficiently update parts of a webpage.

 Aditya Kharadkar

 8

 ● It’s built around components that ‘react’ and update.

 What is the difference between React and React-dom ?

 ● React is a JavaScript library, designed for building better user
 interfaces.

 ● React-dom is a complementary library to React which glues React
 to the browser DOM.

 ● While React provides the tools and concepts to define
 component-based user interfaces, React-dom handles the task of
 rendering those interfaces in a web environment.

 Explain the difference between Real DOM and Virtual DOM.

 1. Real DOM
 a. Real DOM is the actual structure of the webpage.
 b. React updates complete document in the Real DOM.
 c. Real DOM is the actual web page rendered on the browser.

 Any changes made reflect directly on the complete webpage.
 2. Virtual DOM

 a. Virtual DOM is the virtual representation of the Real DOM.
 b. React updates the state changes in virtual DOM first and

 then it syncs with the Real DOM.
 c. Virtual DOM is just like a blueprint of a machine, we can

 make changes in the blueprint but those will not directly
 apply to the machine.

 d. Virtual DOM is a programming concept where a virtual
 representation of UI is kept in memory synced with Real
 DOM by a library such as React-dom and this process is
 called reconciliation .

 Aditya Kharadkar

 9

 e. Virtual DOM makes the performance faster, not because
 the processing itself is done in less time but the reason is
 the amount of changed information - rather than wasting
 time on updating the entire page.

 When does React sync the changes of Virtual DOM with Real DOM
 ?

 ● React synchronizes the changes from the virtual DOM to the Real
 DOM during a process called reconciliation. This process involves
 several steps:

 ○ State and prop changes
 ○ Re-rendering
 ○ Diffing - React compares the new virtual DOM tree with the

 previous one to identify what has changed.
 ○ Batch updates - React doesn’t immediately update the Real

 DOM with each change. Instead, it batches updates to
 optimize performance. The batching happens within the
 lifecycle of an event or after a certain period of time. (e.g.,
 after user action like clicking a button or typing in an input
 field).

 ○ Commit phase.
 ○ Asynchronous updates.

 What is the difference between react.development.js and
 react.production.js via CDN ?

 ● Use react.development.js during developing and debugging your
 application. It helps catch issues early by providing detailed error
 messages and warnings.

 Aditya Kharadkar

 10

 ● Use react.production.js when deploying your application to
 production. It ensures better performance, faster load times by
 stripping out unnecessary development features.

 Difference between async and defer

 ● Async
 ○ Execution order - Scripts with async attributes are

 executed as soon as they are downloaded regardless of the
 order in which they appear on the document.

 ○ Loading behavior - The browser will download the script in
 the background while continuing to parse the HTML
 document. Once the script is downloaded, it will immediately
 execute, potentially interrupting the parsing of the
 document.

 ○ Use case - Best for scripts that are independent and do not
 rely on the DOM being fully parsed or other scripts being
 loaded.

 ● Defer
 ○ Execution order - Scripts with defer attribute are

 executed in the order they appear in the document, but only
 after the entire HTML document has been parsed.

 ○ Loading behavior - The browser will download the scripts in
 the background while parsing the HTML document, but will
 defer execution of the script until after the HTML parsing
 is complete.

 ○ Use case - Ideal for scripts that need to interact with fully
 parsed DOM or that depend on other scripts.

 Aditya Kharadkar

 11

 Episode 02 - Igniting our app

 What is NPM ?

 ● NPM is a package manager.
 ● It is the world’s largest software registry.
 ● Open source developers from every continent use npm to share

 and borrow packages and many organizations use npm to manage
 private development as well.

 ● It consists of three components:
 ○ The website
 ○ The command line interface
 ○ The registry

 ● Use npm to:
 ○ Adapt packages of code for your apps, or incorporate

 packages as they are.
 ○ Download standalone tools you can use right away.
 ○ Run packages without downloading using npx.
 ○ Share code with any npm user anywhere.
 ○ Restrict code to specific developers.
 ○ Create organizations to coordinate package maintenance,

 coding and developers.
 ○ Manage multiple versions of the code and code

 dependencies.
 ○ Update applications easily when underlying code is updated.

 What is a package.json file ?

 ● The package.json file is the heart of the node.js system.

 Aditya Kharadkar

 12

 ● It is the manifest file of any node.js project and contains the
 metadata of the project.

 ● This metadata information can be categorized into below
 categories:

 ○ Identifying metadata properties: It basically consists of
 the properties to identify module/project such as the name
 of the project, current version of the module, license,
 author of the project, description about the project, etc.

 ○ Functional metadata properties: It consists of the
 functional values/properties of the project/module such as
 entry/starting point of the module, dependencies in project
 scripts being used, repository link, etc.

 What is a bundler ?

 ● A JavaScript bundler is a tool that puts your code and all its
 dependencies together in one JavaScript file.

 ● It is a development tool that combines many JavaScript code
 files into a single one that is production-ready loadable in the
 browser.

 ● Following are the top 5 bundlers in JavaScript:
 ○ Browserify
 ○ ESbuild
 ○ Parcel
 ○ Rollup
 ○ Webpack

 Package.json is a configuration for npm.

 Create-react-app uses webpack bundler behind the scenes.

 Aditya Kharadkar

 13

 There are 2 types of dependencies in the package we install:

 1. Dev dependencies
 2. Normal dependencies

 Caret and Tilde in package.json

 1. Tilde (~) Notation
 a. The Tilde (~) notation is employed to match the latest patch

 version while freezing the major and minor versions.
 b. This notation is useful for automatically updating the bug

 fixes, considering that patch updates primarily update bugs.
 2. Caret (^) Notation

 a. It automatically updates both minor and patch updates.
 b. This is used as default notation by npm.
 c. If the current version of a package is ^1.2.4, and tomorrow

 if there is an upgrade in the package and we get a new
 version i.e. 1.2.5, then (^) will automatically upgrade 1.2.4 to
 1.2.5.

 d. Caret helps in upgrading the minor versions whereas tilde
 helps in upgrading the major versions.

 What is the role of the package-lock.json file ?

 ● The package-lock.json file in npm simply serves as a lockfile that
 captures the exact versions of packages and their dependencies.

 ● It ensures that the same version of packages is used across
 different installations or environments.

 ● This consistency prevents unexpected package versions and helps
 avoid compatibility issues.

 Aditya Kharadkar

 14

 ● When you install or update packages using npm, it checks the
 package-lock.json file to ensure the specified versions are
 installed.

 ● This lockfile is especially important when collaborating on
 projects as it guarantees that all the contributors use consistent
 package versions.

 Transitive Dependencies

 ● When a dependency has its own dependencies and those
 dependencies have their own dependencies, then it is known as
 transitive dependencies.

 ● In the React project, inside node modules, every dependency
 folder has its own package.json file which contains the
 dependencies and the description of that dependency.

 Why should we not push the node_modules to git or production ?

 ● Node modules are huge in size.
 ● If we have package.json and package-lock.json, then we can

 recreate the node modules anytime.
 ● This is why it is not recommended to push the node modules.

 Build our app using Parcel

 npx parcel index.html

 ● Parcel is a web application bundler, differentiated by its
 developer experience.

 ● When you run npx parcel index.html, parcel does the following:
 ○ Development mode (default)

 Aditya Kharadkar

 15

 ■ It starts a development server.
 ■ It serves the index.html file and watches for changes

 in your file.
 ■ It automatically reloads the browser when it detects

 the changes.
 ○ Build mode (with additional options)

 ■ If you specify a build option (e.g., npx parcel build
 index.html), parcel will create an optimized,
 production-ready bundle.

 ■ It minifies the code and optimizes assets for better
 performance.

 Explain NPM

 ● Primary purpose
 ○ It is a package manager.
 ○ It is used to install, share, and manage dependencies in

 node.js projects.
 ● Main functions

 ○ Installing packages
 ■ You can install packages globally or locally in your

 project.
 ■ For example, npm install loadash installs the loadash

 package locally, and npm install -g loadash installs it
 globally.

 ○ Managing dependencies - It maintains a package.json file
 that lists all the dependencies of the project.

 ○ Running scripts

 Aditya Kharadkar

 16

 ■ You define scripts in package.json and run them using
 npm run script_name .

 ■ For example, npm run build could be a script to build
 your project.

 ○ Publishing packages - It allows developers to publish their
 own packages to the npm registry.

 Explain NPX

 ● Primary purpose
 ○ NPX is a package runner tool that comes with npm (since

 npm version 5.2.0).
 ○ It allows you to execute libraries from npm packages

 without needing to install them globally.
 ● Main functions

 ○ Running local binaries
 ■ If you have a package installed locally in your project,

 you can use npx to run its binaries without needing to
 specify the path.

 ■ For example, ‘ npx eslint .’ runs the local eslint library.
 ○ Running remote binaries

 ■ Npx can download and execute packages directly from
 the npm registry without installing them.

 ■ For example, npx create-react-app my-app runs the
 create-react-app directly.

 ○ Avoiding global installs
 ■ Npx is useful for running one-off commands without

 polluting your global package namespace.

 Aditya Kharadkar

 17

 ■ For example, you can use ‘npx parcel index.html’ to run
 parcel without needing to install it globally.

 Key differences between npm and npx

 ● Installations vs Execution
 ● Global installs
 ● Temporary use
 ● Ease of use

 Why should CDN links not be used to bring React and React-dom in
 the project ?

 ● If we use CDN links, then we will have to make a network call to
 bring React into our project.

 ● Currently we use React version 18 which is mentioned in the CDN
 link as well. So if in future, React version 19 comes, then we will
 have to change the CDN links again.

 ● We can install React using npm install react which will store React
 into node modules and will not cause any dependency issues.

 ● To get React from a CDN link, you will need to have a network
 (internet) connection.

 Browser scripts cannot have imports/exports

 ● When we install React into the application and remove the CDN
 links, then we will get an error which says Uncaught
 ReferenceError: React is not defined .

 ● This happens because we have installed React, but not imported it
 into our JavaScript file.

 Aditya Kharadkar

 18

 ● import React from ‘react’;
 ● When we do this, we get an error which says Browser scripts

 cannot have imports or exports .
 ● Since we are importing the app.js file in index.html using <script>

 tag, the browser considers it as a normal JavaScript file or a
 browser script.

 ● To make the browser understand that this is not a normal
 JavaScript file , but a module, we have to add an extra attribute
 into <script> tag.

 ● <script type=’module’ src=’./app.js’></script>

 HMR (Hot Module Replacement)

 ● HMR exchanges, adds, or removes modules while an application is
 running, without a full reload.

 ● This can significantly speed up development in a few ways:
 ○ Retain the application state which is lost during a full reload.
 ○ Save valuable development time by only updating what’s

 changed.
 ○ Instantly update the browser when modifications are made

 to the css/js file in the source code, which is almost
 comparable to changing styles directly in the browser’s dev
 tools.

 ● How does it work in the application ?
 ○ The application asks HMR runtime to check for updates.
 ○ The runtime asynchronous downloads the updates and

 notifies the application.
 ○ The application then asks the runtime to apply the updates.
 ○ The runtime synchronously applies the updates.

 Aditya Kharadkar

 19

 How does parcel know that there are changes in the file/code ?

 ● Parcel uses a file watching algorithm which is developed using C++.
 ● This algorithm keeps track of every file and every change made

 into a file.

 How does parcel perform builds so quickly ?

 ● When we start the server using parcel for the first time, it
 creates a folder in the project named .parcel-cache .

 ● So the parcel uses caching. And after every subsequent build, it
 will update the cache.

 What other things does the parcel do ?

 1. Compressing files
 2. Bundling
 3. Image optimization
 4. Minification
 5. Consistent Hashing
 6. Differential Bundling
 7. Diagnostics

 Removing “main” key from package.json

 ● Inside package.json, there is a key named “main” which has a value
 i.e. file_name (App.js).

 ● This tells npm that App.js is the entry point.

 Aditya Kharadkar

 20

 ● But since we use the parcel, we give an entry point, we get an
 entry point while executing the command itself. So in that case,
 this ‘main’ key is of no use.

 ● When we try to execute ‘npx parcel build index.html’, then it gives
 an error. Because, the entry point given in the command has a
 conflict with the value of ‘main’ key.

 ● So in that case, we should remove the ‘main’ key-value pair from
 package.json.

 Executing npx parcel index.html or npx parcel build index.html

 ● When we execute npx parcel index.html , parcel creates a
 development build and stores it in the folder named dist .

 ● After every subsequent change, parcel will update this dist folder
 every time an app/component renders or every time we save new
 changes.

 ● The same thing happens when we execute npx parcel build
 index.html . The only difference is parcel creates a production
 build and stores it in the dist folder in this case.

 ● Note - Do not push the folders dist and .parcel-cache into git
 repo because they can be regenerated.

 Make our app compatible with older browsers/specific browsers

 ● To make our app compatible with older/specific browsers, we can
 make use of browserslist .

 ● In the package.json file, we can create a list and give it name as
 browserslist and specify all the browsers/specific versions in the
 list.

 Aditya Kharadkar

 21

 ● Browserslist is a package stored in node modules and parcel uses
 that to make the app compatible.

 ● Refer to browserslist.dev

 Aditya Kharadkar

 22

 Episode 03 - Laying the foundation

 Run development/production servers using scripts

 ● Currently we use below commands to create a dev and prod build
 ○ npx parcel index.html
 ○ npx parcel build index.html

 ● Instead we can add these commands into the scripts in the
 package.json file.

 ● Now, to start the server, we can use below commands:
 ○ Npm run start / npm start (dev build)
 ○ Npm run build (prod build)

 JSX

 ● JSX is a syntax extension for JavaScript that lets you write
 HTML-like markup inside a JavaScript file.

 ● The syntax is used by preprocessors (i.e. transpilers like babel) to
 transform HTML like syntax into standard JavaScript objects
 that a JavaScript engine will parse.

 Aditya Kharadkar

 23

 Babel

 ● Babel is a JavaScript compiler.
 ● Babel is a toolchain that is used to convert ECMAScript 2015+

 code into a backwards compatible version of JavaScript in
 current and older browsers or environments.

 ● Babel can also convert JSX syntax.
 ● JSX -> React.createElement -> ReactElement - JS Object ->

 HTML Element (render)

 Creating Functional Components

 ● While creating a functional component, the first letter of the
 name of the component must be in uppercase. Otherwise React
 will throw an error.

 ● A React component is a normal JavaScript function which returns
 a JSX/React element.

 ● Example:

 Component composition

 When we use a functional component into another functional
 component, then it is known as component composition.

 Aditya Kharadkar

 24

 Inside a functional component, we can use curly braces ({ }) inside which
 we can execute any JavaScript expression. E.g., variable, function, etc.

 Note: The code is readable because we write JSX. If the code is
 readable, that does not mean React is making it readable. JSX is the
 one which helps to achieve it.

 Role of type attribute in <script> tag. What options can I use
 there ?

 ● The type attribute specifies the type of the script.
 ● The type attribute identifies the content between the

 <script></script> tags.
 ● It has a default value which is text/javascript .

 ○ text/javascript - It is the basic standard of writing
 JavaScript code inside the <script> tag.

 ○ text/ecmascript - This value indicates that the script is
 following ECMAScript standards.

 ○ module - This value tells the browser that the script is a
 module that can import or export other files inside.

 ○ text/babel - This value indicates that the script is a babel
 type and requires babel to transpile it.

 ○ text/typescript - As the name suggests, the script is
 written in typescript.

 { Title } vs { <Title /> } vs { <Title></Title> }

 ● { Title } - This value describes the Title as a JavaScript
 expression or a variable.

 Aditya Kharadkar

 25

 ● { <Title /> } - This value represents a component that is basically
 returning some JSX value.

 ● { <Title></Title> } - <Title> and <Title></Title> are equivalent only
 when <Title> has no child components.

 Aditya Kharadkar

 26

 Episode 04 - Talk is cheap, show me the code

 Config driven UI

 ● Config driven UI is a technique that allows you to create user
 interfaces based on a configuration file such as JSON, or a
 typescript file that defines the layout and content of UI
 components.

 ● This can be useful for creating dynamic and customizable UIs
 without hard coding them.

 Reconciliation in React

 ● The React reconciliation process is the engine behind its efficient
 updates.

 ● When the state of a component changes, React needs to
 determine what updates are necessary to the Real DOM, which is
 where the reconciliation process comes into play.

 ● Reconciliation is React’s way of diffing the virtual DOM tree with
 the updated virtual DOM to determine the most efficient way to
 update the real DOM.

 ● This process allows React to apply only the necessary changes to
 the DOM, avoiding the costly operation of updating the entire
 DOM tree.

 ● The reconciliation algorithm is designed to optimize this process,
 ensuring that the minimum number of operations are performed
 leading to potential performance.

 Aditya Kharadkar

 27

 What is React fiber ?

 ● React fiber is a re-implementation of React;s core algorithm,
 designed to enhance the user interface’s responsiveness and
 renderability.

 ● The term fiber refers to a unit of work, a fundamental concept in
 fiber architecture.

 ● The React team introduced React fiber to improve the
 reconciliation phase of the React application, making it more
 efficient and effective.

 ● React fiber is not a feature but an ongoing implementation of
 React’s reconciliation algorithm.

 ● The React fiber reconciler, a critical part of the fiber
 architecture, is responsible for updating the user interfaces.

 ● It does this by comparing the tree with the work in progress
 tree.

 Why and when do we need keys in React ?

 ● Keys help React identify which items have changed, are added or
 are removed.

 ● Keys should be given to the elements inside the array to give the
 elements a stable identity.

 Can we use indexes as keys in React ?

 ● It is not recommended to use indexes as keys in React if the
 order of the items may change.

 Aditya Kharadkar

 28

 ● This can negatively impact the performance and may cause issues
 with component state.

 ● If you choose not to assign any explicit key to list items, then
 React will default to using indexes as keys.

 Aditya Kharadkar

 29

 Episode 05 - Let’s get hooked

 Can we have both named and default exports in the same file ?

 ● You can use one or both of them in the same file.
 ● A file can have no more than one default export, it can have as

 many named exports as you like.

 React Hooks

 ● React hook is a normal JavaScript function which is provided by
 React which has some logic written behind it (superpowers).

 ● These functions are written by facebook developers inside React.
 ○ useState()

 ■ When we call a useState() hook/function, it gives us a
 state variable/returns a state variable inside an array.

 ■ E.g., const [list, setList] = useState([]);
 ■ The second variable is used to modify the state

 variable.
 ■ Whenever a state variable changes/updates, React

 re-renders the component.

 Diff Algorithm

 ● Diff algorithm is used to find the difference between the
 updated virtual DOM and the previous virtual DOM.

 Aditya Kharadkar

 30

 Episode 06 - Let’s explore the world

 Explain Monolithic Architecture

 ● A monolithic architecture is a traditional model of a software
 program, which is built as a unified unit that is self-contained and
 independent from other applications.

 ● A monolithic architecture is a singular, large computing network
 with one code base that couples all of the business concerns
 together.

 ● To make a change to this sort of application requires updating the
 entire stack by accessing the code base and building and
 deploying an updated version of the server-side interface.

 ● This makes updates restrictive and time consuming.
 ● Monoliths can be convenient early on in a project's life for ease

 of code management, cognitive overhead and deployment. This
 allows everything in monolith to be released at once.

 Aditya Kharadkar

 31

 Microservices Architecture

 ● A microservices architecture, also simply known as microservices,
 is an architectural method that relies on a series of independent,
 deployable services.

 ● These services have their own business logic and database with a
 specific goal.

 ● Microservices decouple major business and domain specific
 concerns into separate, independent code bases.

 ● Update, testing, deployment and scaling occurs within each
 service.

 Aditya Kharadkar

 32

 Fetching data from an API

 ● There are two approaches.
 ○ First Approach

 ■ Page Loads -> Make API call -> Render UI
 ■ In this approach, as soon as the page loads, we will

 make an API call.
 ■ As soon as we get the API response, we will populate

 the data and render the UI.
 ○ Second Approach

 ■ Page Loads -> Render UI -> Make API call -> Render
 ■ In this approach, as soon as the page loads, we will

 render the skeleton of the UI.
 ■ Then we will make an API call.
 ■ Once we get the API response, then we will populate

 the data and render the UI.
 ■ In React, we are always going to follow the second

 approach.

 The fetch() global function

 ● The global fetch() method starts the process of fetching a
 resource from the network, returning a promise that is fulfilled
 once the response is available.

 ● The promise resolves to a response object representing response
 to your request.

 ● A fetch() promise only rejects when the API fails.

 Aditya Kharadkar

 33

 Cross-origin Resource Sharing (CORS)

 ● CORS is an HTTP header based mechanism that allows a server to
 indicate any origins (domain, scheme, or port) other than its own
 from which a browser should permit loading resources.

 ● CORS also relies on a mechanism by which browsers make a
 ‘preflight’ request to a server hosting the cross-origin resource,
 in order to check that the server will permit the actual request.

 ● An example of cross-origin request: The frontend JavaScript
 code served from https://domain-a.com uses fetch to make a
 request for https://domain-b.com/data.json .

 ● For security reasons, browsers restrict cross-origin HTTP
 requests initiated from scripts.

 ● For example, fetch() and XMLHttpRequest follow the same origin
 policy.

 ● That means a web application using those can only request
 resources from the same origin the application was loaded from
 unless the response from other origins includes the right CORS
 headers.

 Note - Showing the spinner until the data is fetched on the screen is
 not a good practice.

 Aditya Kharadkar

 34

 Shimmer UI

 ● When the page loads and the data is being fetched, until the data
 is displayed on the UI, instead of showing a spinner, we can show
 the skeleton of the UI.

 How can we change the state variable even if it is defined as a
 constant ?

 ● Consider we have a button element on clicking of which the state
 variable changes.

 ● A state variable always has an initial value.
 ● Whenever a state variable updates, React triggers a

 Reconciliation cycle i.e. React re-renders the component.
 ● And when the component re-renders, the state variable will have

 the updated value as its default value.

 Why do we need a useEffect() hook ?

 ● The useEffect() is used to handle the side effects such as
 fetching data and updating the DOM.

 ● This hook runs on every render but there is also a way of using a
 dependency array using which we can control the effect of
 rendering.

 ● It is used to mimic the lifecycle methods of class-based
 components.

 ● The motivation behind the introduction of useEffect is to
 eliminate the side effects of using class-based components.

 Aditya Kharadkar

 35

 ● For example, tasks like updating the DOM, fetching data from
 API endpoints, setting up subscriptions or timers, etc can lead to
 unwanted side effects.

 ● How does it work ?
 ○ You call useEffect with a callback function that contains the

 side effect logic.
 ○ By default, this function runs after every render of the

 component.
 ○ You can optionally provide a dependency array as the second

 argument.
 ○ The effect will only run again if any of the values in the

 dependency array changes.

 What is optional chaining ?

 ● It is a feature that simplifies the process of accessing properties
 and methods of nested objects or arrays when intermediate
 properties may be null or undefined.

 What is the difference between a JS expression and a JS
 statement ?

 ● Any unit of code that can be evaluated to a value is an expression.
 ● A statement is an instruction to perform a specific action.
 ● Such actions include creating a variable or a function, looping

 through an array of elements, etc.
 ● JavaScript programs are actually a sequence of statements.

 Aditya Kharadkar

 36

 What is Async and Await ?

 ● Async function
 ○ The Async function allows us to write promise-based code as

 if it were synchronous.
 ○ This ensures that the execution thread is not blocked.
 ○ Async functions always return a promise.
 ○ If a value is returned that is not a promise, JavaScript

 automatically wraps it in a resolved promise.
 ○ Example:

 ● Await keyword
 ○ Await keyword is used to wait for a promise to resolve.
 ○ It can only be used within an async block.
 ○ Execution pause: Await makes the code wait until the

 promise returns a result, allowing for cleaner and more
 manageable synchronous code.

 ○ Example:

 Aditya Kharadkar

 37

 Episode 07 - Finding the path
 ● If the useEffect hook does not have a dependency array, then it

 will get executed on every render.
 ● If the dependency array is empty, the useEffect will be called

 only on initial render (just once when the component renders for
 the first time).

 ● If the dependency array is not empty, the useEffect is called
 only when the dependency changes.

 ● Never create a state variable using useState outside the
 component (functional component).

 ● It is used to create a local state inside a functional component.
 ● Never create a state variable inside if conditions since it will

 create inconsistency.
 ● Never create state variables inside for loop and functions as well.
 ● Always create them at the top of the functional component.

 Routing in React

 ● Whenever we want to create routes, we have to create routing
 configuration.

 ● CreateBrowserRouter from react-router-dom is used to create
 the routing configuration.

 ● The configuration means an information that tells what will
 happen on a specific route.

 Aditya Kharadkar

 38

 ● Example:

 ● But just creating the configuration is not enough. We will have to
 provide this configuration to render it on to the page.

 ● To do that, we use RouterProvider which will provide the routing
 configuration to the app.

 ● Example:

 ● We also need a component which will be shown whenever a user
 tries to access an anonymous path.

 Aditya Kharadkar

 39

 ● React-router-dom also provides a hook i.e. useRouteError which
 gives all the information about the route error.

 ● We can show this information to the user on UI.

 Creating children routes

 ● Now we have to show the respective component based on its path
 in the <AppLayout /> component.

 ● To help us to do that, react-router-dom provides an outlet .
 ● This outlet gets filled with children when the user tries to access

 a path and shows that component on the UI based on that path.

 Aditya Kharadkar

 40

 Two types of routing

 1. Client side routing
 2. Server side routing
 ● In client side routing, the app does not make any network calls

 while navigating from one page to another.
 ● Everything happens on the client side.
 ● In the server side routing, when a user navigates to a path, the

 browser will reload, make a network call, get the page from the
 server, and then show it on the UI.

 ● This is the benefit of single page applications. We have all the
 components on the client side. They just get interchanged based
 on the route.

 Aditya Kharadkar

 41

 Dynamic routing

 ● We can extract this resId using a hook i.e., useParams from
 react-router-dom.

 ● Example: const { resId } = useParams();

 What should happen if we do console.log(useState()) ?

 ● It will display the result of calling the useState() function in our
 browser’s developer console.

 ● const [count, setCount] = useState(0); -> [0, function] <- output

 Aditya Kharadkar

 42

 What are various ways to add images into our app ? Explain with
 code examples.

 1. Use the import keyword

 2. Using public folder
 a. If we want to reference images in the public folder, we can

 do so without importing them explicitly.
 b. This method is useful for handling large image assets or for

 dynamic image URLs.

 Aditya Kharadkar

 43

 c. Place you image in the public directory -> public/my-img.jpg
 d. Then reference it in your code.

 3. Loading images from a remote source
 a. We can load images from a remote source, such as an

 external URL or a backend API, by specifying the image url
 directly in our img tag.

 const img = ‘ https://example.com/img.jpg ’;

 4. Using assets within css
 a. We can also use images as our background images or in other

 css styling.

 Aditya Kharadkar

 44

 Episode 08 - Let’s get classy

 Create a class-based component

 Why do we always have to use super(props) ?

 ● The simple answer to this question is that super(props) basically
 allows accessing this.props in a constructor function.

 ● In fact, what the super() function does is, it calls the constructor
 of the parent class.

 ● When we call super(props), we are basically calling the
 constructor of the React.Component .

 Aditya Kharadkar

 45

 ● So we can say that super() is a reference to the parent class
 constructor i.e. React.Component .

 ● In the above example, React.Component is also the base class of
 UserClass component.

 ● So when we pass props to super(), the props get assigned to this
 also.

 ● So to conclude, if we want to use this.props , or simply this
 keyword inside the constructor, we need to pass the props coming
 from the parent class (React.Component) in super.

 Loading a functional component means we are invoking/mounting that
 function.

 Loading a class-based component means we are creating an instance of
 the class.

 Creating state variables in class-based components.

 ● In class-based components, we define state variables in the
 constructor.

 Aditya Kharadkar

 46

 ● Instead of using state variables as this.state.count, we can also
 destructure them.

 Updating the state variables.

 Aditya Kharadkar

 47

 ● If we have two state variables, and we try to update only one,
 then React will update only that state variable and it will not
 touch the other one.

 Loading component = Mounting the component on a web page.

 Whenever a class loads i.e. a class is instantiated, the constructor of
 the class is called.

 In class-based components, whenever a component loads, a constructor
 is called and then the render() method is called.

 React Lifecycle Method

 Aditya Kharadkar

 48

 How does componentDidMount get executed ?

 1. First the constructor method of parent class gets executed.
 2. Then the render method of the parent class gets executed.
 3. The render method of the parent class encounters the child class

 component. So it goes to that component.
 4. Then the constructor method of child class gets executed.
 5. After that the render() method of the child class gets executed.

 Aditya Kharadkar

 49

 6. Then the componentDidMount() of the child class gets executed.
 7. Then it goes to the parent class component and executes the

 componentDidMount of the parent class component.

 Constructor (Parent) -> render (Parent) -> Constructor (Child) -> render
 (Child) -> componentDidMount (Child) -> componentDidMount(Parent)

 What happens when there are multiple children components in the
 parent class component ?

 ● Below is the order of execution.
 a. Constructor (Parent)
 b. Render (Parent)
 c. Constructor (Child 1)
 d. Render (Child 1)
 e. Constructor (Child 2)
 f. Render (Child 2)
 g. componentDidMount (Child 1)
 h. componentDidMount (Child 2)
 i. componentDidMount (Parent)

 ● There are 2 phases in the React lifecycle
 a. Render phase
 b. Commit phase

 ● The constructor method and render method come under the
 render phase while componentDidMount comes under the commit
 phase .

 ● In the commit phase, React updates the DOM.
 ● Since updating the DOM is an expensive task, React batches all

 the constructor methods and render methods of children

 Aditya Kharadkar

 50

 components and once there is no more child component, then it
 performs the commit phase.

 ● componentDidMount is used to make an API call inside it.

 CreateHashRouter

 ● CreateHashRouter is part of the React Router library and
 provides routing capabilities for single-page applications.

 ● It’s commonly used for building client-side navigation with
 applications.

 ● Unlike traditional server side routing, it uses the fragment
 identifier (hash) in the URL to manage/handle routes on the
 client side.

 ● This means that changes in the URL after the # symbol do
 not trigger a full page reload, making it suitable for single
 page applications.

 CreateMemoryRouter

 ● CreateMemoryRouter is another routing component provided by
 React router.

 ● Unlike CreateHashRouter or BrowserRouter,
 CreateMemoryRouter is not associated with the browser’s URL.

 ● Instead it allows you to create an in-memory router for testing
 other scenarios where you don’t want to interact with the actual
 browser’s URL.

 Aditya Kharadkar

 51

 Why can’t we have the callback function of useEffect async ?

 ● In React, the useEffect hook is designed to handle the side
 effects in functional components.

 ● It’s a powerful and flexible tool for managing asynchronous
 operations, such as data fetching, API calls and more.

 ● However, useEffect itself cannot directly accept an async
 callback function.

 ● This is because useEffect expects its callback function to return
 either nothing i.e. undefined or a cleanup function, and it doesn’t
 work well with promises returned from the async functions.

 ● There are a few reasons for this:
 a. Return value expectation

 ■ The primary purpose of the useEffect callback
 function is to handle side effects and perform cleanup.

 ■ React expects us to return either nothing i.e.
 undefined from the callback or return a cleanup
 function.

 ■ An async function returns a promise, and it doesn’t fit
 well with this expected behavior.

 b. Execution order and timing
 ■ With async functions, we might not have fine-grained

 control over the execution order of the asynchronous
 code and cleanup code.

 ■ React relies on the returned cleanup function to
 handle cleanup when the component is unmounted or
 when the dependencies specified in the useEffect
 dependency array change.

 Aditya Kharadkar

 52

 ■ If you return a promise, React doesn’t know when or
 how to handle the cleanup.

 Aditya Kharadkar

 53

 Episode 09 - Optimizing our app

 What is the Single Responsibility Principle ?

 ● If we have a function, a class, or a single entity in our app, it
 should have a single responsibility.

 ● For example, <Header> component in our app should have only one
 responsibility i.e. to display the header on the application.

 ● If we have a component which is doing multiple things, then we
 should divide that component into multiple components where
 each one of them has a single responsibility.

 ● Breaking down the code into small modules -> Modularity

 What is a custom hook ?

 ● A hook is nothing but a utility function .
 ● Hooks are reusable functions.
 ● When you have component logic that needs to be used by multiple

 components, we can extract that logic to a custom hook.
 ● A custom hook in React is a JavaScript function that allows you to

 extract and reuse logic involving stateful behavior and side
 effects from function components.

 ● Custom hooks enable you to encapsulate common logic in a way
 that can be shared across multiple components, promoting code
 reuse and better organization.

 ● Why use custom hooks ?
 a. Code Reusability: Custom hooks allow you to reuse stateful

 logic across different components without duplicating code.

 Aditya Kharadkar

 54

 b. Cleaner Components: By extracting complex logic into
 custom hooks, you can keep your components smaller and
 more focused on rendering.

 c. Separation of Concerns: Custom hooks help separate the
 logic from the UI, making your code easier to manage and
 understand.

 Aditya Kharadkar

 55

 Above is the component which performs 2 tasks:

 1. Fetch data from the API
 2. Display data on the webpage

 We can have this component only to display the data on the web page
 and can create a custom hook which fetches the data.

 Our Custom Hook

 Aditya Kharadkar

 56

 Home Component

 ● In the above example, I have moved the logic of fetching data
 into a custom hook i.e. useDemo .

 ● Then I imported the custom hook useDemo into the Home
 component and used destructuring to get the itemDetails which is
 returned from the useDemo() hook.

 ● Because of this, my Home component only has one responsibility
 which is to display the data.

 ● The Home Component became clean since all the logic of fetching
 data is now moved into the custom hook.

 Aditya Kharadkar

 57

 Create a custom hook to see if the user is online or offline

 The above hook checks if the user is online or offline using the window
 object and the callback function sets the value of isOnline and the hook
 then returns the value.

 This value can be extracted into another component by importing the
 useOnlineStatus() hook in it.

 Aditya Kharadkar

 58

 Why should we name our hook as “useOnlineStatus” ?

 ● It is a naming convention for custom hooks which is followed by
 most of the companies.

 ● A lot of companies use a linter which throws an error if the
 custom hooks are not named like this.

 ● It is a good practice to use the word use while naming the custom
 hook.

 ● If someone else sees the code, they will get to know that this is
 not a normal function but a React hook.

 When we are building a large-scaled application, it is important to
 break it down into different components (Bundles).

 Having a single bundle will make our app slower since a single bundle will
 contain all the code of the application which takes a lot of time to load.

 The solution for this is to split our app into smaller chunks (bundles).
 This process is known as below terms:

 1. Chunking
 2. Code Splitting
 3. Dynamic Bundling
 4. Lazy Loading
 5. On demand loading

 For example, if we are developing an e-commerce application. This
 ecommerce app will have a cart which will contain different
 functionalities.

 So we can create a separate bundle for the Cart component.

 Aditya Kharadkar

 59

 This bundle will not be loaded initially. It will be loaded only when the
 user visits the cart page.

 That means, with this approach the app will have 2 bundles. One would
 be a normal bundle which contains all the code of the app except for
 the cart component. This bundle will be loaded when the user visits our
 app.

 The other bundle will contain the code of the cart component which will
 be loaded only when the user visits the shopping cart.

 That is why this process is also known as on demand loading .

 When and why do we need lazy() ?

 ● In simpler terms, lazy loading is a design pattern.
 ● It allows you to load parts of your application on demand to

 reduce the initial load time.
 ● For example, you can initially load the components and modules

 related to user login and registration. Then you can load the rest
 of the components based on user navigation.

 ● You might not feel much difference when using lazy loading for
 small-scaled applications. But it significantly impacts large scaled
 applications by reducing the initial load time.

 ● Ultimately it improves both the use experience and application
 performance.

 Aditya Kharadkar

 60

 Advantages of Lazy loading

 1. Reduces the initial load time by reducing the bundle size.
 2. Reduces browser workload.
 3. Improves application performance in low-band width situations.
 4. Improves user experience at initial loading.
 5. Optimizes resource usage.

 Disadvantages of lazy loading

 1. Not suitable for small scale applications.
 2. Placeholder can slow down quick scrolling.
 3. Requires additional communication with the server to fetch

 resources.
 4. Can affect SEO and ranking.

 Example

 ● When we use lazy() on a component which fetches the API
 response, React can give us an error i.e. A component suspended
 while responding to synchronous input .

 ● To avoid or handle this error, React offers a component i.e.
 Suspense.

 Aditya Kharadkar

 61

 Suspense

 ● Suspense is a built-in React component which lets you temporarily
 render a fallback UI while its children are still loading.

 ● If a component tries to retrieve the API response, while it does
 that, we can show a fallback UI to the user until we get the API
 response.

 ● This fallback UI could be a shimmer UI as well.
 ● We can just wrap the lazy loaded component inside the

 <Suspense> component.
 ● This <Suspense> component has a property i.e. fallback which

 takes the component which must be rendered until we get the
 API response in this case.

 When and why do we need Suspense ?

 ● Suspense is best used when you want to display a fallback while
 waiting for something to load.

 ● The two main use cases for this are when you are waiting for data
 to be fetched from an API after the initial page load and when
 you are lazy loading other React components.

 Aditya Kharadkar

 62

 Episode 10 - Jo dikhta hai wo bikta hai

 Explore all the ways of writing CSS

 1. Inline CSS

 // Better approach -> create an object which contains all the
 // styles and then assign it to the style attribute

 Aditya Kharadkar

 63

 2. Importing external stylesheet
 a. Create a new css file in your project directory.
 b. Write css.
 c. Import it into the React file.

 3. Use CSS Modules.
 a. A CSS module stylesheet is similar to the regular

 stylesheet, only with a different extension (e.g.
 styles.module.css).

 b. Create a file with .module.css extension.
 c. Import the module in React app.
 d. Add a class name to an element or component and reference

 the particular style from the imported styles.

 Aditya Kharadkar

 64

 Use Styled Components

 ● Install the styled-components npm package in the command line.

 ● Create a component and assign a styled property to it. Note the
 use of template literals denoted by backticks in the wrapper
 object.

 Aditya Kharadkar

 65

 Conditional Styling

 Aditya Kharadkar

 66

 How do we configure tailwind ?

 1. Install tailwindcss and its peer dependencies via npm and create
 your tailwind.config.js file.

 2. Add tailwindcss and autoprefixer to your postcss.config.js file,
 or whatever postCSS is configured in your project.

 3. Add the paths to all of your template files in your
 tailwind.config.js file.

 Aditya Kharadkar

 67

 4. Add the @tailwind directives for each of tailwind’s layers to your
 main css file.

 5. Run your build process with npm run dev or whatever command is
 configured in your package.json file.

 6. Make sure your compiled css is included in the head .

 Aditya Kharadkar

 68

 In tailwind.config.js, what does all the keys mean (content, theme,
 extend, plugins)?

 1. Content: This key specifies the paths to all of your template files
 in your project. Tailwind CSS will scan these files for class names
 and generate only the necessary styles. This helps keep the final
 CSS file small and optimized.

 2. Theme: This key is used to customize the default theme of
 Tailwind CSS. You can define your own values for colors, fonts,
 spacing, and more.

 3. Extend: This key is used inside the theme key to extend the
 default theme without completely overriding it. This is useful for
 adding additional utilities or modifying existing ones.

 4. Plugins: This key allows you to add plugins to Tailwind CSS. Plugins
 can add additional utilities, components, or modify the existing
 ones. Tailwind CSS has a variety of official plugins, or you can
 create your own.

 Why do we have a .postcssrc file ?

 The .postcssrc file (or postcss.config.js file in some setups) is used to
 configure PostCSS, a tool for transforming CSS with JavaScript
 plugins. PostCSS is often used in conjunction with Tailwind CSS to
 enable additional CSS processing capabilities. Here’s why you might
 have a .postcssrc file:

 1. postCSS plugins: PostCSS is a powerful tool that can use a
 variety of plugins to perform different tasks, such as

 Aditya Kharadkar

 69

 autoprefixing, minifying CSS, and more. The .postcssrc file
 specifies which plugins to use and their configurations.

 2. Tailwind CSS Integration: Tailwind CSS is a PostCSS plugin. The
 .postcssrc file ensures that Tailwind CSS is processed correctly
 during the build process.

 3. Autoprefixing: Autoprefixer is a PostCSS plugin that adds
 vendor prefixes to CSS rules, ensuring compatibility with
 different browsers. Including it in your .postcssrc file helps
 maintain cross-browser compatibility.

 4. CSS Minification and Optimization: You can use plugins like
 cssnano for minifying and optimizing your CSS. This is
 particularly useful for production builds to reduce the file size.

 5. Modularity and Maintainability: Having a dedicated
 configuration file for PostCSS allows for better modularity and
 maintainability. It separates PostCSS-related configurations
 from other parts of your build setup, making it easier to manage
 and update.

 Aditya Kharadkar

 70

 Episode 11 - Data is the new oil

 Higher Order Components

 ● Higher order component is a function that takes a component and
 returns a component.

 ● It takes a component as an input, enhances that component, adds
 some features into it and returns the component.

 ● Higher order components are pure functions because they do not
 change the existing behavior of the input component.

 Aditya Kharadkar

 71

 Controlled and Uncontrolled components

 1. Uncontrolled Components
 a. If a component is managing its own state and controlling the

 behavior on its own then the component will be known as
 Uncontrolled component.

 b. The parent component will have no power or control over
 this component and hence it will be known as an uncontrolled
 component.

 c. In the above example, the <ItemCard /> component is a child
 component of the <ItemCardList /> component.

 Aditya Kharadkar

 72

 d. The <ItemCard /> component has a state variable i.e.
 showHeading which has a default value false . This value gets
 changed when the button is clicked by the user.

 e. If the showHeading is true then the Hello message will be
 shown, if it is false then the message will be hidden.

 f. Now this component manages its own state and behavior and
 it does not depend on its parent component. Hence it is
 referred to as an uncontrolled component .

 2. Controlled Component
 a. If the state and behavior of a component is being managed

 by its parent component, then it is referred to as the
 controlled component .

 b. In the above example, the <ItemCard /> component does not
 have any state variable to manage.

 Aditya Kharadkar

 73

 c. Instead, the value of showHeading is being sent from the
 parent component <ItemCardList /> and is being received by
 the <ItemCard /> component via props.

 d. Since the <ItemCardList /> component is now controlling the
 <ItemCard /> component, the <ItemCard /> is now referred
 to as the Controlled Component .

 Lifting the state up

 ● In the above example, the <ItemCard /> component does not
 control its own state, instead it is controlled by its parent
 component <ItemCardList />.

 ● But with the currently implemented code, we can not change the
 state by clicking the button because the parent component has no
 way to know about the user's interaction with the button.

 ● To do that, we need to let the parent component know when the
 button is clicked so that it can change the value of the state
 variable i.e. showHeading .

 ● This can be achieved by lifting the state up .
 ● In the below example, we pass a function as a prop i.e. onShow to

 the child component i.e. <ItemCard /> from the parent component
 i.e. <ItemCardList /> which sets the value of the state variable
 showHeading .

 ● In the child component, we use the onShow prop and pass it as a
 function to the onClick event in the button element.

 ● This will let the parent component know that the user has clicked
 the button. Then the value of the showHeading state variable will
 be changed.

 Aditya Kharadkar

 74

 Note - React has a one-way data stream. That means the data flows
 into one direction i.e. from parent component to child component.

 Props Drilling

 ● Passing props is a great way to explicitly pipe data through your
 UI tree to the components that use it.

 ● But passing props can become inconvenient when there is a huge
 tree of components which has a parent component having children

 Aditya Kharadkar

 75

 components and these children components are also parents to
 their children components.

 ● In this case, lifting the state up can lead to a situation called
 Prop Drilling .

 What is React Context ?

 ● React context is a method to pass props from parent to child
 components, by storing the props in a store (similar in redux) and
 using these props from the store by child components without
 actually passing them manually at each level of the component
 tree.

 ● Using Redux to interact with states from parent to child
 components is not only quite difficult to understand but also gives
 you more complex code.

 ● Through the usage of context, the understanding of concept and
 code is far easier than that of Redux.

 ● Whenever you want a store to keep your states or variables in and
 use them elsewhere in your program, use Context .

 ● Generally when we have two or more levels (height) in our
 component tree, it is viable to use a store instead of passing
 props and then lifting the state as this will create confusion and
 unnecessary lengthy code.

 Aditya Kharadkar

 76

 Create and provide the context

 ● In the above code, a context is created using the createContext
 which is imported from react .

 ● We have given a default value this i.e. an object which has a list
 named items .

 ● We can pass any value to the context while creating it such as a
 string, number, list, object, etc.

 ● This context is now assigned to a variable named CartContext
 which is being exported to use in other components.

 ● In the above code, the CartContext is imported in the <App />
 component and is being used as a wrapper of the <Header /> and
 <Body /> component.

 ● This will make the context available to access for the application.

 Aditya Kharadkar

 77

 ● createContext returns a context object.
 ● The context object itself does not hold any information.
 ● It represents which context other components read or provide.
 ● The context object has a few properties:

 ○ SomeContext.Provider : lets you provide the context value to
 components.

 ○ SomeContext.Consumer : is an alternative and rarely used
 way to read the context value.

 ● The above code will still throw an error because we also need to
 pass a default value to the Provider.

 Consuming the Context

 Aditya Kharadkar

 78

 ● To consume the context, we make use of the useContext hook.
 ● useContext returns the context value for the context you

 passed.
 ● To determine the context value, React searches the component

 tree and finds the closest context provider above for that
 particular context.

 Note - It is suggested to use Context in small and mid-size applications.
 In the large-scale applications, we can make use of Redux .

 Aditya Kharadkar

 79

 Episode 12 - Let’s Build Our Store

 Introduction

 Note - Redux is not mandatory to use in our application.

 When we build large-scale applications where we have to manage the
 state of a lot of components and the application has a number of
 features, then using Redux in our application makes sense.

 In small-scale or mid-scale applications, we can still manage the state
 without using Redux.

 Redux and React both are not the same thing. Redux is not part of
 React. They both are different libraries.

 All the applications built using Redux can also be built without using it.

 Redux is not the only library for state management. There is also
 another library named Zustand .

 Just like we have React Dev Tools, we also have Redux Dev Tools which
 help us to debug our application when we use Redux.

 There are 2 libraries that Redux team offers:

 1. react-redux: This is like a bridge between React and Redux.
 2. Redux toolkit: This is a newer way of writing redux. This package

 is intended to be the standard way of writing Redux logic.

 Redux Store is like a very big JavaScript object, which has a lot of
 data in it, stored in a global central space.

 Is it a good idea to store all the data in one place ? Yes

 Aditya Kharadkar

 80

 Since the Redux store contains a lot of data, we do not want it to
 become very big, so we make use of Slices offered by Redux.

 We can assume slice as a small portion of Redux store. We can
 create multiple slices in our store.

 To keep data separate, we create logical partitions in our store. These
 partitions are known as Slices .

 If we want to keep the data related to the cart, then we will create a
 separate slice for the cart. If we want to keep the data related to the
 logged in user, then we will create a separate slice for that as well.

 Redux says that we cannot directly modify the data in the slice. Redux
 offers a way to do that.

 Assume that we have a cartSlice which keeps track of the data in the
 cart. We have an Add to cart button which adds the item into the cart.
 By clicking on this button, we cannot directly modify our cartSlice.

 To modify the cartSlice, when the user clicks on the Add To Cart
 button, we have to dispatch an action .

 When we dispatch an action, it calls a function and then this function
 modifies the cart .

 Here is the flow:

 User clicks the button —> Dispatch an action —> Action calls a
 function —> Function modifies the cart slice

 The function which is being called by the action is known as
 Reducer Function .

 Aditya Kharadkar

 81

 So when the user clicks the button, it dispatches an action. This action
 calls the reducer function and this reducer function updates the slice.

 ********This was about writing the data into the store.**********

 How to read data from the store ?

 Suppose I want to show the count of items in the cart on my navigation
 bar.

 We can read the data from the store by something known as Selectors .

 When we use a selector to read the data, this phenomenon is known as
 Subscribing to the store .

 So we can say that the navigation bar is subscribed to our store. That
 means the navigation bar will alway be in sync with the store. If the
 data in the store (cart slice in this case) changes, then the data shown
 on the navigation bar will also change.

 Aditya Kharadkar

 82

 Install Redux

 npm install @reduxjs/toolkit

 npm install react-redux

 Create/Configure the store

 Providing the store to the application

 ● Configuring the store is Redux’s job. That’s why we imported
 configureStore from @reduxjs/toolkit .

 Aditya Kharadkar

 83

 ● Providing this store to the application is the job of react-redux .
 That’s why we imported Provider from react-redux .

 ● We then use this <Provider></Provider> as a wrapper to wrap our
 application inside it.

 ● Provider takes a property store to which we can assign our
 configured store.

 Create a slice

 ● createSlice() returns an object which has following properties:
 ○ Name
 ○ Initial state
 ○ Reducers

 ● The initialState is the state which a slice has in the beginning
 before it gets modified.

 ● Reducers have actions and these actions have callback functions.

 Aditya Kharadkar

 84

 ● addItem is a reducer function which is called as an action .
 ● The function which is assigned to it is responsible for modifying

 or updating the cartSlice.
 ● We have exported the reducer as a default export.
 ● We have also exported the actions from the slice.
 ● The payload of the action will contain a new item in this case

 which will be pushed to the items array in the state.

 Add the slice to the store

 ● The reducer key is assigned with an object which will have all the
 slices (cartSlice in this case).

 ● The reducer contains the slices where each of the slices contains
 its own reducer functions.

 Subscribing to the store

 ● We can subscribe to the store using a selector to read the data
 of the store.

 ● Redux offers a hook named useSelector which can be used to
 subscribe to the store.

 Aditya Kharadkar

 85

 ● This useSelector gives us access to the store where we can find
 the cart.items.

 ● The items of the cart will be stored in cartItems which we can
 use in our component.

 ● Note - Make sure to access a particular state variable. In our
 case, we have accessed cart.items which gives us the exact value
 of items.

 ● If we subscribe only to store.cart , sometimes this store.cart may
 contain state variables other than items .

 ● If there is a change in any of those state variables, then it will
 re-render the cart component as well.

 ● So subscribing only to store.cart.items will make the Cart
 component re-render only when there is a change in the items .

 Aditya Kharadkar

 86

 Dispatch an action

 ● React-redux offers a hook to dispatch an action i.e. useDispatch .
 This hook returns a function i.e. dispatch() .

 ● The dispatch() function takes an argument i.e. addItem action.
 ● The addItem action has a reducer function which takes one

 argument i.e. payload (apple) .
 ● When an action is dispatched, an object is created. This object

 has a key i.e. payload and it will have the value which is passed to
 the reducer function i.e. apple .

 Aditya Kharadkar

 87

 ● {
 Payload: “apple”,

 }
 ● The handleAddItem will be responsible for dispatching the action

 and it is assigned to the click event of the button. So whenever
 the user clicks the button, the addItem action will be dispatched
 and it will add that item to the cart.

 onClick={handleAddItem} vs onClick={() => handleAddItem(item)} vs
 onClick={handleAddItem(item)}

 1. onClick={handleAddItem}
 a. This syntax assigns the handleAddItem function directly to

 the onClick event.
 b. When the button is clicked, the handleAddItem function will

 be called without any arguments.
 2. onClick={() => handleAddItem(item)}

 a. This syntax uses an arrow function to call handleAddItem
 with the item argument.

 b. This is useful when you need to pass specific arguments to
 the handleAddItem function when the button is clicked.

 c. Here, the item needs to be defined or in scope when the
 button is rendered.

 d. If item is a variable available in the component’s context, it
 will be passed to handleAddItem when the button is clicked.

 3. onClick={handleAddItem(item)}
 a. This syntax is incorrect and will not work as expected.

 Aditya Kharadkar

 88

 b. Here, handleAddItem(item) is immediately invoked when the
 component renders, rather than being set as a callback to
 be invoked on the click event.

 c. The return value of handleAddItem(item) (which is typically
 undefined unless the function returns another function) will
 be assigned to onClick .

 d. To properly call handleAddItem with an argument when the
 button is clicked, you should wrap it in an anonymous
 function, like in the second example.

 In older redux (vanilla redux), it was not allowed to mutate the state.

 We used to create a copy of our state and then modify that. We also
 had to return the new state.

 This whole process is still done by Redux behind the scenes but now it
 is not asking developers to do it. Redux is using the immer library to do
 it.

 In the new redux, we have to mutate the state. And it is not mandatory
 to return the state as well.

 Aditya Kharadkar

 89

 Episode 13 - Time for Test

 Types of Testing

 ● Unit Testing
 ● Integration Testing
 ● End-to-End Testing (e2e testing)

 1. Unit Testing
 a. Unit Testing is a fundamental aspect of software testing

 where individual components or functions of an application
 are tested in isolation .

 b. This method ensures that each unit of the application
 performs as expected.

 c. By focusing on small, manageable parts of the application,
 unit testing helps identify and fix bugs early in the
 development process, significantly improving code quality
 and reliability.

 d. Unit tests are typically automated and written by
 developers.

 2. Integration Testing
 a. Integration testing is a software testing process where

 software components, modules, or units are tested to
 evaluate system compliance concerning functional
 requirements.

 Aditya Kharadkar

 90

 b. This testing phase is crucial to ensure seamless interactions
 among various units/components, their functionalities and
 how well they can operate as a single entity.

 3. End-to-End Testing
 a. In e2e testing, the application is tested from the moment

 the user starts using the application to the moment user
 leaves the application.

 b. In this testing, we test the complete flow of the application
 from beginning to the end.

 React Testing Library (RTL)

 ● React Testing Library builds on top of DOM Testing Library by
 adding APIs for working with React components.

 ● React Testing Library Jest uses behind the scenes.
 ● Jest is a delightful JavaScript Testing Framework with a focus

 on simplicity.
 ● It works with projects using: Babel, TypeScript, Node, React,

 Angular, Vue and more!

 Install React Testing Library

 npm install -D @testing-library/react

 Install Jest

 npm install -D jest

 We are using jest with Babel, hence we need to install some
 dependencies as well.

 npm install –D babel-jest @babel/core @babel/preset-env

 Aditya Kharadkar

 91

 Once we install the dependencies, we have to configure babel as well.

 Create babel.config.js file and below code in it:

 We are using parcel and parcel uses babel. So Parcel has its own
 configuration of babel already.

 When we created babel.config.js, we were creating our own
 configuration of babel which conflicts with the existing configuration
 of babel.

 The new configuration of babel will overwrite the existing
 configuration done by Parcel. To avoid this, we should refer to the
 official documentation of Parcel - Usage with other tools .

 As per the documentation, we have to create a file .parcelrc and below
 configuration:

 Aditya Kharadkar

 92

 When we do this configuration, babel.config.js will not conflict with the
 Parcel’s configuration for babel.

 The above configuration will disable default babel transpilation
 configured by Parcel. Now we can use our own config file for Babel.

 Command to run test cases - npm run test

 Configure Jest

 Initialize Jest - npx jest –init

 Answer a few questions for initializing Jest

 1. Would you like to use TypeScript for the configuration file? -> no
 (in this case)

 2. Choose the test environment that will be used for testing ->
 jsdom (browser-like)

 a. JSDOM is a library which parses and interacts with
 assembled HTML just like a browser.

 b. When we run test cases, we do not run them on the browser.
 But we need a browser-like environment to run them.

 c. JSDOM helps us to get a browser-like environment. It will
 give us the features of a browser.

 3. Do you want to add coverage reports? -> Yes
 4. Which provider should be used to instrument code for coverage?

 -> Babel
 5. Automatically clear mock calls, instances, contexts and results

 before every test? -> Yes

 Note - If we are using Jest version 28 or later with React Testing
 Library, jest-environment-jsdom now must be installed separately.

 Aditya Kharadkar

 93

 Install jest-environment-jsdom

 npm install -D jest-environment-jsdom

 Basics of Testing

 Test a function which returns the sum of 2 numbers

 Approach 1: Create a folder named __tests__ . Jest will track all the
 files from this folder and execute the test cases. Jest will consider all
 the files in this folder as test files .

 Approach 2: Suppose we have a file sum.js . If the name of the file in
 which you have written test cases matches any of the below filenames,
 then it will be considered as a test file.

 1. sum.test.js
 2. sum.test.ts
 3. sum.spec.js
 4. sum.spec.ts

 Aditya Kharadkar

 94

 ● Create a file named sum.test.js.
 ● Import the sum() function from sum.js.
 ● We use the test() function to write test cases.
 ● The test() function has 2 argument:

 ○ Description of the test case
 ○ A callback function which tests the function

 ● Inside the test() function, we call the sum() function by passing 2
 arguments 14 and 14 and store its result into the variable.

 ● Then we use the expect() function and pass the variable result as
 an argument. Then we use the toBe() function and pass the value
 which we expect to be the result of the sum() function.

 ● This whole statement is known as assertion . This means that we
 are expecting the result to be 28.

 ● If the sum() function returns 28, then the test case will pass.
 Otherwise it will fail.

 Testing React Component

 We will test if the component is rendered on not.

 To test this, we first have to render the component on JSDOM . We
 will test if <Home /> component is rendered or not.

 Aditya Kharadkar

 95

 ● We first imported the render function from the react testing
 library since we have to render the <Home /> component on
 JSDOM.

 ● Then we imported the screen object from the react testing
 library. Whatever is rendered on the JSDOM can be accessed
 using the screen object.

 ● Inside the test function, we first rendered the component.
 ● Then we know that <Home /> component has an <h1> element. So

 we can say that if we find the heading (<h1>) element rendered on
 the JSDOM, that means the component is rendered.

 ● So to access the heading, we use the screen object. Then this
 screen object has a method getByRole() which can be used to find
 an element by its role.

 ● In this case we have specified the role as heading because we are
 finding an <h1> element. This found element will be stored in the
 constant variable heading .

 ● Then we use the expect() function to expect our heading to be
 present in the document. This can be done using the
 toBeInTheDocument() method which tells us if the element
 exists in the document or not.

 Aditya Kharadkar

 96

 ● Then we can run our command npm run test to test the
 component. When we do that, we will get the below error:

 This error says that we can not use JSX inside our test case. JSX
 isn’t enabled for our test cases. The error also says that to make
 the JSX work, we have to add @babel/preset-react.

 Install @babel/preset-react

 npm install -D @babel/preset-react

 Include @babel/preset-react inside babel config file.

 Why do we need to add this in the config file ?
 @babel/preset-react is helping to convert JSX into HTML.

 Now when we run npm run test, we will get another error.

 Aditya Kharadkar

 97

 The error says that toBeInTheDocument() is not a function. This
 happened because we have to install one more library i.e.
 @testing-library/jest-dom

 Install @testing-library/jest-dom

 npm install -D @testing-library/jest-dom

 We need to import this library in our test file.

 Now when we run the command npm run test, this time our test
 cases will be passed.

 Aditya Kharadkar

 98

 Write a test case to check if the button is present in the
 document or not.

 This is the component to be tested.

 Now I have specified the role as a button .

 Aditya Kharadkar

 99

 Another way of finding the button

 The text of the button in the <Home /> component is Click . So if it
 finds this work anywhere in the document, then it will be considered as
 a button.

 This can be done using the getByText() method. We can search using a
 specific text in the document.

 Aditya Kharadkar

 100

 Find an input element using the placeholder text

 Note - The role for input element is textbox.

 Aditya Kharadkar

 101

 Testing to see if we have 2 input elements or not

 ● We use getAllByRole() method to get all the elements which have
 the specified role.

 ● We have specified the role as textbox to get the input elements.
 ● When we do console.log(inputName) , it prints the array of React

 elements (objects/JSX) . These React elements are the input
 elements we have in our document.

 ● Then we want to make sure that there should be 2 input elements.
 Hence we expect the length of inputName to be 2.

 Grouping of test cases

 ● We can group all the test cases in a file using the describe()
 function.

 ● This function takes 2 arguments:
 ○ Description
 ○ An arrow function

 ● Inside the arrow function, we can put all the test cases.
 ● We can also create groups inside a group. To do that, we can put a

 describe function inside a describe function.

 Aditya Kharadkar

 102

 Note: We can also change the name of function test() to it(). They
 both work the same way. it() is like an alias of test().

 Aditya Kharadkar

 103

 Note: Add the /coverage folder to .gitignore. This folder contains
 the data about how many files it has covered while testing.

 Testing a component which is using Redux inside

 ● Consider we have a <Header /> component which is using Redux to
 see if the user is logged in or not.

 ● When we write test cases for such a component, the test() or it()
 function does understand React and JSX, but it does not
 understand Redux .

 ● We know what we are testing the component in isolation. Hence
 it does not have access to the Redux store .

 ● So we have to provide the store to it just like we provide it to our
 application.

 ● So we have to import Provider from react-redux and wrap the
 <Header /> component inside <Provider store={store}>.

 Aditya Kharadkar

 104

 Testing a component which is using <Link> element from
 react-router-dom

 ● Consider that the <Header /> component also uses the <Link> tag
 from react-router-dom to allow user to navigate from one page to
 another.

 ● The test() or it() function also does not know about <Link>
 element because it is not part of React but React router dom.

 ● So in order to make it work, we have to import the
 BrowserRouter from react-router-dom and wrap our <Header />
 component inside it.

 Fire an event inside a test case

 ● Consider that inside the <Header /> component, we have a Login
 button .

 ● Upon clicking on this button, the text changes to Logout . That
 means before clicking the button, the text is Login and after
 clicking the button, the text is Logout .

 ● To test this, we have to fire an event inside the test case.

 Aditya Kharadkar

 105

 ● In this test case, first we rendered the <Header> component.
 ● Then we tried to find the Login button using getByRole() method.

 We gave the role as button and we gave the additional option to
 make sure that the name of the button is Login .

 ● Then we used the fireEvent() object which has a click() method
 to fire the click event on loginButton .

 ● The we try to find the button with the name as Logout .
 ● Then we expect the logoutButton to be present in the document.
 ● This is how we know if the login button is changed to logout

 button after clicking the button or not.

 Testing a component which takes props

 ● Consider that we have a component <ItemCard> which shows us
 the details of an item such as name, price, brand name, etc.

 ● This component takes props as well.
 ● In order to test this component, we have to pass props to it while

 rendering it.

 Aditya Kharadkar

 106

 ● These props will be the mock data which we will create inside a
 folder named as mocks .

 ● So create a folder named as mocks . Then create a file inside it
 and name it as itemCardMock.json .

 Aditya Kharadkar

 107

 Integration Testing

 ● Consider that we have <Body> component which has a Search box
 and Seach button .

 ● When the <Body> component renders on the browser, it makes an
 API call using the fetch() function which is offered by browser .

 ● Let’s test this <Body> component

 ● When we run the npm run test command, it gives an error: fetch
 is not defined.

 ● This error occurs because fetch() given by browser and we are
 rendering this <Body> component on JSDOM which is browser-like
 but not the actual browser.

 ● Hence this super power of browser i.e. fetch() does not exist on
 JSDOM. So we have to create a mock function the same way we
 created the mock data.

 Note: A test case does not make an actual API call. Because we do
 not run it on the browser, so it does not have power to talk to the
 world.

 ● The actual fetch() function returns a promise which is json which
 then return another promise which is our actual data returned
 from the API call.

 ● So we will have to create the mock function the same way the
 actual fetch() function works.

 Aditya Kharadkar

 108

 ● We are trying to create a mock function of the fetch() function
 which is in the global object .

 ● We then make use of jest which has a method fn() to create a
 function. This method takes an argument i.e. an arrow function .

 ● Inside the arrow function, we return a promise which resolves .
 This gives us the JSON which also returns a promise.

 ● So we assigned a function to json which returns a promise which
 also resolves to the actual data of the API.

 ● Note: This data will be the mock data we create in the mock
 folder . So instead of passing “data” , import the mock data and
 pass it here.

 Note: Currently, we have to run the npm run test command again
 and again after creating test cases. To solve that issue, we can
 add a new command in the package.json file inside our scripts .

 “watch-test”: “jest –watch”

 And instead of using npm run test command, we can use npm run
 watch-test .

 Aditya Kharadkar

 109

 Note: Whenever we are using fetch() inside the test case, we
 should always wrap our render() inside act() function.

 ● We will import the act from react-dom/test-utils .
 ● Then we will make the callback function of it() function async .
 ● Then we will use the await keyword before act() .
 ● Inside the act() function, we will pass an async callback function

 which will render the <Body> component .

 Aditya Kharadkar

 110

 Below is the code of Body component

 Aditya Kharadkar

 111

 Test case for Body component

 ● Inside the it() function, we first rendered the <Body> component.
 ● Then we try to find the search button using the its role i.e.

 button and name i.e. Search .
 ● Then we try to find the search input using its test id i.e.

 SearchInput .
 ● We know that we have a change event for the seach button. When

 the user types something in the search field and click the search
 button, then we get the search results. So we need to find out
 what is typed in the search field. To do that we need to fire the
 change event .

 Aditya Kharadkar

 112

 ● For the change event, browser gives the event object which has a
 target value. But to test this feature, we can give the mock data
 i.e. Jeans .

 ● Then we fire a click event on the search button.
 ● Then we find the cards using their test id i.e. ItemCard .
 ● And we expect to have 3 results when we search for Jeans.

 Helper functions

 1. beforeAll() - This function will be called before running all the
 test cases.

 2. afterAll() - This function will be called after running all the test
 cases.

 3. beforeEach() - This function will be called before running every
 single test case.

 4. afterEach() - This function will be called after running every
 single test case.

 Aditya Kharadkar

 113

 Bonus - useMemo, useCallback, useRef hooks

 useMemo

 ● useMemo is a React hook that lets you cache the result of a
 calculation between re-renders .

 ● If a component is getting re-rendered again and again whenever a
 state variable changes or an API is called, then we do not want
 React to perform all the calculations again.

 ● Using useMemo hook, we can cache the calculations, so that even
 if the component re-renders, it will not perform that calculation
 again.

 Note: In strict mode, React renders the component twice to make
 sure that it renders properly. This happens only in the development
 mode. In production, it will render the component only once.

 ● Consider that we have a toggle button which handles the dark
 mode of the application. The value of the mode is saved in a state
 variable. Whenever the button is clicked, this state variable will
 change.

 ● This causes re-rendering of the component every time the button
 is clicked.

 ● Suppose we have a calculation in the same component which is not
 related to the dark mode feature. But whenever the button is
 clicked, the calculation is performed again.

 ● If the calculation is a heavy operation, then it will cause the
 performance issues.

 Aditya Kharadkar

 114

 ● This is when we should use the useMemo hook. The useMemo hook
 memoize the calculation result.

 ● useMemo() hook takes 2 arguments:
 ○ A callback function
 ○ A dependency array

 ● Callback function performs the calculation.
 ● And useMemo hook performs the operation only when there is a

 change in the dependency array.
 ● So even if all the state variables are changed in the component,

 but there is not change in the dependency array, then the
 calculation will not be performed again.

 useCallback

 ● useCallback is a React hook that lets you cache a function
 definition between re-renders .

 ● useCallback us quite similar to useMemo. In useMemo, we cache
 the result returned by a function but in useCallback, we cache the
 function itself.

 ● useCallback alse gets executed only when there is a change in the
 dependency array.

 useRef

 ● useRef is a React hook that lets you reference a value that’s
 not needed for rendering .

 ● When there is a case, where you want to keep some data in your
 component which you do not want to re-render , then we use the
 useRef hook.

 Aditya Kharadkar

